Tag Archive | "pools"

Chlorine Gas


Chlorine is the most used for industrial products around the world. This element is abundant in the earth’s crust and oceans. It is used to manufacture plastics, synthesize other chemicals, purify water supplies, treat sewage, and make refrigerants, varnishes, pesticides, drugs, disinfectants, and bleaches.

Chlorine is compressed gas that is very toxic, corrosive and a strong oxidizer. Extreme caution and safety equipment should be used when around any form of chlorine. When a person breathes chlorine, the corrosive substance splits hydrogen from water in most human tissue, releasing oxygen and hydrogen chloride, which can cause severe burns. Scientists say there are palliative remedies but no antidote.

Chlorine gas cylinders were first used by the Germans in 1915 as a chemical weapon. Chlorine gas destroyed the respiratory organs of its victims and this led to a slow death by asphyxiation. Chlorine is a severe eye, skin, nose, throat and upper repertory tract irritant. Small exposure causes coughing; choking, wheezing and burning of the eyes, throat and skin which can cause frostbite. Large exposure causes the airways to constrict, at the same time fluid builds up in the lungs causing the victim to drown. High doses can kill within a couple of breaths.

———————————————————————————————————————————————

References

“Capital is Coming to Kill You with Chlorine This Time”. Infoshop News. 20 Oct 2011. Web. 20 Jan 2012. <http://news.infoshop.org/article.php?story=20111020162216998&query=capital+is+coming+to+kill+you>.

“OSH Answers: Chlorine”. Canadian Centre for Occupational Health and Safety. 19 Feb 1999. Web. 20 Jan 2012. <http://www.ccohs.ca/oshanswers/chemicals/chem_profiles/chlorine/basic_chlorine.html>.

“Chlorine”. Wikipedia. 7 Nov 2012. Web. 20 Jan 2012. <http://en.wikipedia.org/wiki/Chlorine>.

“Chlorine Gas”. Spartacus Educational. Web. 7 Nov 2012. <http://www.spartacus.schoolnet.co.uk/FWWchlorine.htm>.

Posted in HealthComments Off on Chlorine Gas

The Wonders of Ammonia & Chlorine


They Are All Around You: Ammonia & Chlorine. Be Aware of Them and Stay Safe.

The two most common chemicals found in your home, office and commercial facilities in one form or another are Ammonia (NH3) and Chlorine (Cl2). They are also two of the oldest and most widely produced chemicals in commercial use around the world.

Ammonia, a refrigerant by “nature”
Refrigeration by mechanical means goes back to the 1800s and ammonia was among the earliest chemicals to be compressed for this purpose. Commercial use of ammonia, as a refrigerant, was fairly common by the late 1800s. Ammonia was first synthesized in 1823 and the first commercial production of synthetic ammonia began in 1913.

Ammonia refrigeration was being used in ice rinks as early as the 1920s. Commercial use of ammonia as a refrigerant is virtually all around us. It can be found in ice systems for ice arenas, commercial coolers and freezers, refrigeration systems, college campuses, office parks, air conditioning for the International Space Station and Biosphere II, commercial fertilizers, etc.

Ammonia is low cost, non-ozone depleting and does not add to global warming. It is abundant and the most energy efficient gas used as a refrigerant and is manufactured using natural elements of nitrogen and hydrogen. It is unlikely it will be phased out because of this but it is none the less a very dangerous gas if not handled properly. It is a colorless gas with a pungent, choking odor and is lighter than air; thus it typically rises to the highest area in a room when it escapes. It is water soluble; therefore, makes it useful as an additive to many cleaning products. It is a safe gas when handled correctly but can be detected by the human nose at very low concentrations of ≤ 50 ppm and will not ignite in air. It has a very irritating affect on the airways to the lungs and eyes and should not be inhaled.

Chlorine, a sanitizer by “man”
Chlorine is a sanitizing gas. When mixed with water, it produces two chemicals that kill microorganisms by oxidizing them. Chlorine was discovered in 1774 by a Swedish chemist. For the most part, Chlorine is manufactured by passing electricity through salt water. When proper concentration is mixed with water, it acts as a common sanitizer for commercial and home pools and spas killing microorganisms. Pool water with properly mixed and monitored (daily), chlorine is quite safe and has about the same chlorine levels as tap water. Regardless, use extreme caution when handling chlorine in any form. Avoid breathing chlorine fumes directly as they can have a burning (oxidizing) affect on the lungs.

Never mix chlorine with any other chemicals as this could be extremely hazardous. In other words, it can become toxic and even explosive. Some people have skin allergies and red eye to chlorine and chloramines found in pool water that is not balanced properly. Chloramines are produced when chlorine in pool water mixes with perspiration, oils and urine from swimmers’ bodies. Hypochlorous acid, one of the two chemicals formed from mixing chlorine and water, reacts with ammonia which is a component of sweat and urine producing chloramines. Improperly balanced chlorine levels in pool water could result in very high levels of chlorine, releasing gas from the surface of the water potentially causing breathing difficulties for some people. Anyone handling the chlorine concentrations used in commercial pools should be properly trained and always wear protective gear for hands and eyes.

Gas detectors, a commercial requirement
In commercial areas, gas detectors are required and used to detect leaking ammonia or chlorine. Every commercial arena has ammonia sensors and every commercial pool has chlorine sensors for worker and patron safety. These sensors will detect the smallest leaks and send a signal to controllers that alarm when levels climb above preset values established by Occupational Safety and Health Organization in all provinces and states for workplace exposure to toxic gases. The gas detectors typically activate or halt ventilation equipment(s), depending on the application, and alarm to warn workers of a small leak. The activated warning alarms let workers know to evacuate all patrons and call the local fire department if the leak increases to higher concentrations. Because they are both very hazardous gases at very low levels, these sensors should be gas calibrated for accuracy every six months and bump tested every month for safety purposes.

Enjoy these wonderful public facilities but be aware of your surroundings for your health and safety.

Written by: Frank Britton, CETCI’s General Manager


REFERENCES: www.eHow.com, www.amonia21.com, www.mama’shealth.com

Posted in Environment, HealthComments (57)

Six Factors to Consider Prior to Choosing an Electronic Enclosure Pt. 2 of 6


Choosing the right enclosure maybe as important as selecting the right product. An electronic enclosure, also known as housing, helps protect the circuit board allowing it to function properly. Elements (e.g. water, wind, dust, dirt, heat, cold, humidity, and chemicals) in the surrounding environment could damage or deteriorate the product (see Figure 1).

For example, large temperature variations between the inside and outside of the enclosure can result in pressure differences that may create a vacuum and draw water through the fittings or component and gasket seals. Or when moist air reaches its dew point, it can no longer hold its form and forms moisture droplets being formed on any available surfaces. This is called condensation. When temperatures are below freezing, it will condense into frost. After time, corrosion occurs and causes electrical resistance, which in turn generates additional heat, product performance problems, rusting, increasing risk of circuit shorting out, and arcing and sparking incidences.

Here are six factors to think about before choosing an enclosure:

  • Environment
  • Application
  • Thermal management requirements
  • Enclosure performance standards
  • Material
  • Size

APPLICATION
Application can be associated with market or product. Market applications would be locations such as water treatment plants, parking garages, pools, arenas, repair shops, food plants, etc. Product applications would be physical enclosure requirements such as wall mount, duct mount, easy access, etc.

Written by: Teresa Kouch, Marketing

Continue to pt. 3 of 6 >>>

Posted in Enclosures, ProductsComments (4)


Archives

  • I posted a new photo to Facebook ,
  • CETCI Launches the FCS Flexible Control System, a High Performance Gas Detection Controller with Logic Control... ,
  • We are going to the AHR Expo in Vegas. Are you? If so, drop by our booth to say Hi! Check us out on Map Your Show... ,
  • I posted a new photo to Facebook ,
  • Tutorial – How to Calibrate the DST-ECO: via @YouTube,
  • Last day of the AHR Expo in Mexico. Word is, it's been a great show!,
  • We make gas detectors for monitoring toxic, combustible and refrigerant gases for a wide range of applications.... ,
  • BTL Listing granted for CETCI BACnet® Module... ,

Gas Detectors

CETCI gas detectors are used to detect many different gases. Some of the most common are Carbon Monoxide, Carbon Dioxide, Nitrogen Dioxide, Nitric Oxide, Ammonia, Chlorine, Ozone, Combustible Gases like Methane and Propane, Oxygen, Refrigerants and more.

IAQ Monitors

The YES Series of IAQ Monitors are essential for those responsible for conducting Indoor Air Quality (IAQ) Investigations. These instruments are specifically designed to measure and record the quality of indoor air in offices, buildings, homes, schools, parking garages, ice rinks, etc.