Tag Archive | "gas detector"

CETCI’s Solid State vs Non-dispersive Infrared Refrigerant Gas Sensors


For many refrigeration applications, using solid state sensors will provide an economical and reliable gas detection solution. Solid state sensors are reliable if used in a clean area with very little temperature and humidity changes. Solid State refrigerant sensors should not be used where there are other chemicals or gases present (other than refrigerants), such as alcohol based cleaners, fumes from running engines, fuel storage containers, etc.

Using infrared sensor technology will ensure the highest degree of sensor accuracy if monitoring an area where there are other  contamination gases or multiple refrigerants in the same area. Infrared refrigerant sensors should not be used in locations that have corrosive chemicals such as chlorine, ammonia and other oxidizers that are present, especially if there is a higher humidity level.

Comparison of CETCI’s Solid State Refrigerant Sensors and Infrared Refrigerant Sensors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applications for Refrigerant Sensors, Recommendation by Sensor Type

refrigerants-applications

 

 

 

 

 

 

NOTE: Ammonia is commonly used as a refrigerant in very low temperature applications such as food/meat processing, ice making plants and ice arenas. Electrochemical sensors are required to ensure accurate monitoring in Ammonia applications.

For more information about our products, check out our website at www.critical-environment.com or to discuss a tailored gas detection solution for your application, contact us at 1-877-940-8741.

Posted in ApplicationsComments Off on CETCI’s Solid State vs Non-dispersive Infrared Refrigerant Gas Sensors

CETCI’s New 3D Printed Calibration Clip Leaves Both Your Hands Free!


At Critical Environment Technologies Canada Inc, (CETCI), we strive to be innovative, cutting edge and creative in our endeavors to fulfill our customers’ needs. Our latest testament to this is our newly designed calibration clip (or ‘Cal Clip’ as it is called for short). It has been an exciting few months as we have gone through different designs, prototypes, various types of plastics and calibration testing.

Remember the last time you calibrated one of our gas detectors that had a splash guard? The blue or orange calibration adapter cup that you had to hold with one hand over the splash guard while trying to open the gas cylinder with the other, flow gas and keep the cup snug up against the device? And depending on the location of the detector, acrobatics may have been involved, right? Well, those days are gone!

Our engineers have designed a device that easily clips around the splash guard and remains in place by itself, freeing up BOTH your hands to do what they need to do. Perhaps even give a high five to a coworker!

before-now-cal-clip

 

The Cal Clip is made of light, durable ABS/polycarbonate plastic and comes in our signature blue company colour. It is specially designed to allow calibration gas into the sensor vent through a small barb hose fitting attached to standard or Teflon tubing. The barb hose fitting can accommodate two sizes of hose: 1/8” (3.175 mm) ID and 3/16” (4.762 mm) ID. While stored, the tubing can be left attached or removed from the Cal Clip as desired.

The Cal Clip fits around the circular, black splash guard that is factory installed at the time of order on any of our black enclosure gas detectors or self-contained controllers. With the hose barb fitting at the bottom, pointing towards you, simply place the inside edge of the Cal Clip next to the outer edge of the splash guard and gently flex open the top of the other side outwards until it slips and clips around the entire splash guard. To remove, gently open the clip at the top while pulling one of the hooked ends towards yourself and it will slip off. If you pull the device apart too aggressively, overstretching it, the circular formation of the Cal Clip may be compromised. Evidence of this results in whitish bars appearing on the blue plastic (like stretchmarks).

NOTE: Because the Cal Clip is designed to prevent entry or exit of air except via the hose barb fitting, it must be removed from the splash guard during normal operation or else the gas readings will not be accurate.

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies designs and manufacturers indoor air quality and fixed gas detection systems including self-contained systems, controllers and analog and digital transmitters. Applications include commercial HVAC, institutional, municipal and light industrial markets worldwide. Many of these applications are for vehicle exhaust, but areas of specialization include refrigeration applications, food processing plants, manufacturing plants, wastewater treatment plants, fisheries, wineries/breweries, pulp and paper mills, recreational facilities, bakeries, greenhouses, and many more.

For more information about our products, check out our website at www.critical-environment.com or to discuss a tailored gas detection solution for your application, contact us at 1-877-940-8741.

Posted in Accessories, News, ProductsComments Off on CETCI’s New 3D Printed Calibration Clip Leaves Both Your Hands Free!

Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops


With the recent legalization of marijuana in many North American regions, the cannabis cultivation industry is booming. Greenhouses and other indoor grow rooms provide a structure for growing plants in a controlled environment but can also pose potential hazards to human health. To create favourable growing conditions, reliable heating, cooling and ventilation must be used. Heating may be supplied by sunlight, natural gas, propane gas, fuel oil, wood or electricity. Gas powered equipment may be a source of carbon monoxide if not properly maintained and serviced. Grow lights emit a great deal of heat and can cause combustible gases to ignite. Cooling of the facility is often done by a ventilation system. But there may also be an air conditioning system, which could be a source for refrigerant leaks. Current practices for the commercial cultivation of marijuana and industrial hemp uses Carbon dioxide (CO2) enrichment to increase plant growth and development either using cylinders of liquefied compressed gas or a CO2 generator. CO2 displaces oxygen and can cause an asphyxiation hazard.

 

Two gas detectors should be mounted inside the furnace room – one for monitoring potential leaks in the pipes supplying the gas to the furnace, and the other monitoring carbon monoxide levels generated by the furnace. A well maintained, efficiently burning furnace produces very small amounts of CO, but a dirty, inefficient burning one can product deadly amounts. To monitor the CO levels, an LPT-M-TCO-R should be mounted inside the furnace room at the “breathing zone” (4 -6 ft from the floor). Connected the the LPT-M-TCO-R would be a remote sensor. If the furnace uses propane, an ESH-A-C3H8-100 remote sensor with an internal propane sensor would be used, mounted 6 inches off the finished floor, close to the pipes suppling the gas to the furnace. If the furnace uses natural gas, an ESH-A-CCH4-100 remote sensor with an internal methane sensor should be used instead, mounted 6 inches from the ceiling above the pipes supplying the gas.

 

Inside the room, should be an audible/visual alarm device such as the RSH-24V-R Remote Strobe/Horn. Mounted outside the door of the furnace room would be a QCC Quad Channel Controller. If there are additional entrances to the room, each should have a remote visual/audible alarm device outside the door. Inside the grow room there should be an AST-IS6 carbon dioxide gas detector mounted in the “breathing zone” (4 – 6 ft from the floor) to provide continuous monitoring of CO2 levels. This is especially important if a CO2 enrichment practice is used. The AST-IS6 can be factory set with a range of 0 – 5,000 ppm and one device covers approximately 743 sq m (8,000 sq ft).

 

The LPT-M and AST-IS6 will communicate with QCC, which in turn will display their gas level readings, and in the event of a leak / high gas concentration, will provide an audible alarm and control equipment such as the ventilation system, shut off the furnace, trigger the other remote horn/strobe devices or other set responses as configured using its 3 internal relays. The QCC can be ordered with an optional data logging package and it can be configured to communicate with a Building Automation System. The aforementioned gas detectors/sensors are housed in water / dust tight enclosures, and are IP54 rated with the factory installed splash guard, providing protection for the equipment in wet areas.

 

Typical Indoor Grow Op Monitoring System:

3D-grow-room-QCC

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies Canada Inc. is a leading equipment manufacturer for commercial and industrial gas detection applications. We are dedicated to designing, developing and servicing hazardous gas detection systems for a wide range of applications that require monitoring of refrigerants, TVOCs, combustible and toxic gases. CETCI’s products are sold through a worldwide network of authorized distributors. Our knowledgeable Regional Sales Managers are experienced with many application scenarios, including commercial, institutional, municipal and light industrial markets worldwide. Areas of specialization include car parks, refrigeration plants, commercial swimming pools, water purification, including wastewater treatment facilities, ice arenas, wineries and breweries, schools and many more.

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

Posted in Applications, EducationalComments Off on Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

CETCI Launches the DCC-MRI Oxygen Monitoring System


Delta, British Columbia, Canada – Critical Environment Technologies Canada Inc. (CETCI) is pleased to tell you about the DCC-MRI Oxygen Monitoring System for MRI room applications in hospitals and clinics. The DCC-MRI replaces our GEM-MRI, offering technological and functional improvements over its predecessor.

Magnetic Resonance Imaging equipment is cooled by compressed gas. Compressed gas, if it leaks will displace Oxygen, creating the potential for an oxygen deficient or hazardous atmosphere. To meet general health and safety protocols, Oxygen monitoring devices are required to be present in MRI rooms. However, due to the strong magnetic field inside the MRI room, electronic equipment tends to not operate properly when mounted inside the room. The DCC-MRI system is designed to be installed on the wall outside of the MRI room with a flexible, sample line running from the inlet port fitting to the sampled environment. The factory tested maximum length of line is 15.24 m (50 ft). The DCC-MRI constantly monitors the target air area and indicates real time Oxygen levels on the LCD display.

The system is designed with an internal flow detector, sample draw pump, adjustable flow meter and an internal LPT-A Analog Transmitter that houses an integral Oxygen sensor. The measurement range of the sensor is 0 to 25.0% volume Oxygen. The alarm is factory configured to a descending alarm set point of 19.5% vol to alert if there is a deficiency of oxygen in the target air area.

DCC-MRI-closed-open

 

Features include two 4 – 20 mA outputs, one alarm level line voltage relay with field configurable time delays and trigger levels, a blocked flow alarm indicating a dirty filter or clogged tubing, a side mounted audible buzzer, an LCD digital display with LED indicators for channel alarm status and fault conditions and a door mounted Silence push button.

The DCC-MRI Oxygen Monitoring System is designed to accurately measure to government established exposure levels for Oxygen deficiency for health and safety.

For more information on the DCC-MRI, please visit www.critical-environment.com/products/dcc-mri.html

Posted in News, Products, Self ContainedComments Off on CETCI Launches the DCC-MRI Oxygen Monitoring System

A Dual Channel Gas Detector for Monitoring Hazardous Gases in the Workplace


Critical Environment Technologies Canada Inc, (CETCI) offers strategic and reliable gas detection solutions for many applications. Our DCC Dual Channel Controller is an ideal fixed gas detection system for monitoring indoor air to protect workers from exposure to unhealthy levels of combustible, toxic and refrigerant gases, oxygen deficiency, and volatile organic compounds in the workplace.

The potential for exposure to hazardous gases is a concern in many workplace environments. In fact, every workplace must meet local (provincial/state, COOHS/OSHA, etc.) health and safety standards for hazardous gas exposure during working hours. To ensure the safety of the workers, equipment, and the facility, areas presenting a gas hazard should be monitored by gas detectors. In the larger, open areas, a fixed gas detection system is suitable; in confined spaces that workers enter and where gas may be present, portable gas detectors are more appropriate.

Commercial buildings that share a warehouse with manufacturing and/or service work in the back and offices in the front are a prime place for harmful gases and vapours to be present in the entire workplace area.  Airports, hotels, restaurants, supermarkets, shopping malls, manufacturing plants, food processing plants, vehicle repair shops, wineries, breweries and many more are all examples of workplaces where hazardous gases are used or produced onsite.

CETCI’s DCC Dual Channel Controller offers a fixed, continuous hazardous gas monitoring solution with two gas channels, two programmable relays, two 4-20 mA outputs and one configurable 4-20 mA input, an internal audible alarm, an LCD display with LED indicators and a password protected menu system. The two gas channels can be configured with one or two internal gas sensors, one internal and one remote gas sensor or one remote gas sensor, depending on the application requirements. The internal gas sensor options include toxic gases such as carbon monoxide, nitric oxide, nitrogen dioxide, oxygen, etc. The remote sensor options include refrigerants, TVOCs and combustible gases such as hydrogen, methane and propane. The DCC can also be connected to a remote 4-20 mA transmitter/gas detector such as our AST-IS (CO2), ART (IR refrigerants), LPT (CO or NO2) or LPT-A (various gases). All of our gas detectors come standard in a water/dust tight enclosure with a copper coated interior to reduce RF interference.

Optional, value added features for the DCC include an extra loud door mounted buzzer for noisy environments, a top mounted strobe, an internal heater for cold environment applications, and a door mounted water tight buzzer and splash guard for wet or spray down environments.

The DCC Dual Channel Controller conforms to CSA, UL, CE, FCC and IP54 standards.

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies designs and manufacturers indoor air quality and fixed gas detection systems including self-contained systems, controllers and transmitters (analog, digital and wireless). Applications include commercial HVAC, institutional, municipal and light industrial markets worldwide. Many of these applications are for vehicle exhaust, but areas of specialization include refrigeration applications, food processing plants, manufacturing plants, wastewater treatment plants, fisheries, wineries/breweries, pulp and paper mills, recreational facilities, bakeries, greenhouses, and many more.

For more information about our products, check out our website at www.critical-environment.com or to discuss a tailored gas detection solution for your application, contact us at 1-877-940-8741.

 

Posted in Controllers, Products, Self ContainedComments Off on A Dual Channel Gas Detector for Monitoring Hazardous Gases in the Workplace

Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms


Fruits and vegetables are commonly shipped for long distances from one country to another before they are ripe so they can endure the voyage and remain viable. Upon arrival at their destination, the first order of business is to get them ripe and ready for sale and consumption.

As fruit and vegetables ripen, they release ethylene, a naturally occurring growth hormone. To be profitable and meet demands, commercial fresh produce companies need to speed up the ripening process in a uniform and predictable way, which is achieved by adding more ethylene in a controlled environment. Typically the fresh produce is placed in air-tight ripening rooms and ethylene is introduced at concentrations between 10 and 1,000 ppm depending on the type of produce.

Ethylene is not harmful to humans in the concentrations used in ripening rooms. An extremely high level of ethylene would have to be inhaled in order to have an adverse effect on human health. That being said, ethylene is a very reactive and flammable gas, making the potential for an explosion a safety concern. The LEL for ethylene is 27,000 ppm (2.7%) and a common concentration used in a ripening room is 1,000 ppm (0.1% by volume), with a typical exposure time of 24 hours.

Two common ways to add ethylene to the ripening rooms is by high pressure gas cylinders or ethylene generators. If ethylene is delivered into the rooms by pipes from cylinders, there are areas for potential leaks and the threat of explosion from cylinders of pure ethylene is high. An ethylene gas detector would be highly recommended to continuously monitor the ethylene gas levels in the cylinder storage room.

In the ripening rooms, the primary reason for an ethylene gas detector is not for the safety of humans, but rather for the safety of the perishable goods. Assisted ripening is a complex process and predictions can be made about the remaining shelf life of the perishable goods based on the level of ethylene gas that is present; that the produce gives off. Some types of fruits and vegetables are more sensitive to ethylene than others. Ethylene sensitive produce will spoil if exposed to levels that make them ripen too quickly. Varieties that are more tolerant but don’t get the right amount will not ripen on schedule.

There is also the potential for ethylene to leak from one room into another, especially if the method of delivery is through a network of pipes. This could cause premature ripening or result in damage to the other types of produce in adjacent rooms. Monitoring the concentration levels of the ethylene gas in each room will help ensure the correct amount is being delivered at all times.

As fruit ripens, it releases carbon dioxide. This decreases the oxygen level in the room and delays the effects of the ethylene. CO2 levels in excess of 1% (10,000 ppm) will slow the ripening process, and can cause quality and production problems. When CO2 levels build up, the ripening room should be vented, which could be as simple as opening the door, or turning on a ventilation system. Constant monitoring of the CO2 levels inside the room with a gas detector that can be configured to activate the ventilation system at a predefined concentration would allow for more efficient control and optimization of the ripening process, a higher safety level and better production.

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies Canada Inc. is a leading equipment manufacturer for commercial and industrial gas detection applications. We are dedicated to designing, developing and servicing hazardous gas detection systems for a wide range of applications that require monitoring of refrigerants, TVOCs, combustible and toxic gases. CETCI’s products are sold through a worldwide network of authorized distributors. Our knowledgeable Regional Sales Managers are experienced with many application scenarios, including commercial, institutional, municipal and light industrial markets worldwide. Areas of specialization include car parks, refrigeration plants, commercial swimming pools, water purification, including wastewater treatment facilities, ice arenas, wineries and breweries, schools and many more.

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

 

References

smartGAS Mikrosensorik GmbH. Web. Retrieved from

http://www.smartgas.eu/en/products/applications/foodstorage.html [accessed 30 September 2015]

CHEMAXX INC. “Ethylene Explosion – Banana Ripening.” (2006). Retrieved from

http://www.chemaxx.com/explosion17b.htm [accessed 30 September 2015]

Catalytic Generators LLC “All About Ripening.” (2015). Retrieved from

http://ripening-fruit.com/ingredients_for_proper_ripening [accessed 30 September 2015]

 

 

 

Posted in Applications, EducationalComments Off on Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Archives

Gas Detectors

CETCI gas detectors are used to detect many different gases. Some of the most common are Carbon Monoxide, Carbon Dioxide, Nitrogen Dioxide, Nitric Oxide, Ammonia, Chlorine, Ozone, Combustible Gases like Methane and Propane, Oxygen, Refrigerants and more.

IAQ Monitors

The YES Series of IAQ Monitors are essential for those responsible for conducting Indoor Air Quality (IAQ) Investigations. These instruments are specifically designed to measure and record the quality of indoor air in offices, buildings, homes, schools, parking garages, ice rinks, etc.