Archive | Educational

Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

With the recent legalization of marijuana in many North American regions, the cannabis cultivation industry is booming. Greenhouses and other indoor grow rooms provide a structure for growing plants in a controlled environment but can also pose potential hazards to human health. To create favourable growing conditions, reliable heating, cooling and ventilation must be used. Heating may be supplied by sunlight, natural gas, propane gas, fuel oil, wood or electricity. Gas powered equipment may be a source of carbon monoxide if not properly maintained and serviced. Grow lights emit a great deal of heat and can cause combustible gases to ignite. Cooling of the facility is often done by a ventilation system. But there may also be an air conditioning system, which could be a source for refrigerant leaks. Current practices for the commercial cultivation of marijuana and industrial hemp uses Carbon dioxide (CO2) enrichment to increase plant growth and development either using cylinders of liquefied compressed gas or a CO2 generator. CO2 displaces oxygen and can cause an asphyxiation hazard.

 

Two gas detectors should be mounted inside the furnace room – one for monitoring potential leaks in the pipes supplying the gas to the furnace, and the other monitoring carbon monoxide levels generated by the furnace. A well maintained, efficiently burning furnace produces very small amounts of CO, but a dirty, inefficient burning one can product deadly amounts. To monitor the CO levels, an LPT-M-TCO-R should be mounted inside the furnace room at the “breathing zone” (4 -6 ft from the floor). Connected the the LPT-M-TCO-R would be a remote sensor. If the furnace uses propane, an ESH-A-C3H8-100 remote sensor with an internal propane sensor would be used, mounted 6 inches off the finished floor, close to the pipes suppling the gas to the furnace. If the furnace uses natural gas, an ESH-A-CCH4-100 remote sensor with an internal methane sensor should be used instead, mounted 6 inches from the ceiling above the pipes supplying the gas.

 

Inside the room, should be an audible/visual alarm device such as the RSH-24V-R Remote Strobe/Horn. Mounted outside the door of the furnace room would be a QCC Quad Channel Controller. If there are additional entrances to the room, each should have a remote visual/audible alarm device outside the door. Inside the grow room there should be an AST-IS6 carbon dioxide gas detector mounted in the “breathing zone” (4 – 6 ft from the floor) to provide continuous monitoring of CO2 levels. This is especially important if a CO2 enrichment practice is used. The AST-IS6 can be factory set with a range of 0 – 5,000 ppm and one device covers approximately 743 sq m (8,000 sq ft).

 

The LPT-M and AST-IS6 will communicate with QCC, which in turn will display their gas level readings, and in the event of a leak / high gas concentration, will provide an audible alarm and control equipment such as the ventilation system, shut off the furnace, trigger the other remote horn/strobe devices or other set responses as configured using its 3 internal relays. The QCC can be ordered with an optional data logging package and it can be configured to communicate with a Building Automation System. The aforementioned gas detectors/sensors are housed in water / dust tight enclosures, and are IP54 rated with the factory installed splash guard, providing protection for the equipment in wet areas.

 

Typical Indoor Grow Op Monitoring System:

3D-grow-room-QCC

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies Canada Inc. is a leading equipment manufacturer for commercial and industrial gas detection applications. We are dedicated to designing, developing and servicing hazardous gas detection systems for a wide range of applications that require monitoring of refrigerants, TVOCs, combustible and toxic gases. CETCI’s products are sold through a worldwide network of authorized distributors. Our knowledgeable Regional Sales Managers are experienced with many application scenarios, including commercial, institutional, municipal and light industrial markets worldwide. Areas of specialization include car parks, refrigeration plants, commercial swimming pools, water purification, including wastewater treatment facilities, ice arenas, wineries and breweries, schools and many more.

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

Posted in Applications, EducationalComments Off on Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Fruits and vegetables are commonly shipped for long distances from one country to another before they are ripe so they can endure the voyage and remain viable. Upon arrival at their destination, the first order of business is to get them ripe and ready for sale and consumption.

As fruit and vegetables ripen, they release ethylene, a naturally occurring growth hormone. To be profitable and meet demands, commercial fresh produce companies need to speed up the ripening process in a uniform and predictable way, which is achieved by adding more ethylene in a controlled environment. Typically the fresh produce is placed in air-tight ripening rooms and ethylene is introduced at concentrations between 10 and 1,000 ppm depending on the type of produce.

Ethylene is not harmful to humans in the concentrations used in ripening rooms. An extremely high level of ethylene would have to be inhaled in order to have an adverse effect on human health. That being said, ethylene is a very reactive and flammable gas, making the potential for an explosion a safety concern. The LEL for ethylene is 27,000 ppm (2.7%) and a common concentration used in a ripening room is 1,000 ppm (0.1% by volume), with a typical exposure time of 24 hours.

Two common ways to add ethylene to the ripening rooms is by high pressure gas cylinders or ethylene generators. If ethylene is delivered into the rooms by pipes from cylinders, there are areas for potential leaks and the threat of explosion from cylinders of pure ethylene is high. An ethylene gas detector would be highly recommended to continuously monitor the ethylene gas levels in the cylinder storage room.

In the ripening rooms, the primary reason for an ethylene gas detector is not for the safety of humans, but rather for the safety of the perishable goods. Assisted ripening is a complex process and predictions can be made about the remaining shelf life of the perishable goods based on the level of ethylene gas that is present; that the produce gives off. Some types of fruits and vegetables are more sensitive to ethylene than others. Ethylene sensitive produce will spoil if exposed to levels that make them ripen too quickly. Varieties that are more tolerant but don’t get the right amount will not ripen on schedule.

There is also the potential for ethylene to leak from one room into another, especially if the method of delivery is through a network of pipes. This could cause premature ripening or result in damage to the other types of produce in adjacent rooms. Monitoring the concentration levels of the ethylene gas in each room will help ensure the correct amount is being delivered at all times.

As fruit ripens, it releases carbon dioxide. This decreases the oxygen level in the room and delays the effects of the ethylene. CO2 levels in excess of 1% (10,000 ppm) will slow the ripening process, and can cause quality and production problems. When CO2 levels build up, the ripening room should be vented, which could be as simple as opening the door, or turning on a ventilation system. Constant monitoring of the CO2 levels inside the room with a gas detector that can be configured to activate the ventilation system at a predefined concentration would allow for more efficient control and optimization of the ripening process, a higher safety level and better production.

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies Canada Inc. is a leading equipment manufacturer for commercial and industrial gas detection applications. We are dedicated to designing, developing and servicing hazardous gas detection systems for a wide range of applications that require monitoring of refrigerants, TVOCs, combustible and toxic gases. CETCI’s products are sold through a worldwide network of authorized distributors. Our knowledgeable Regional Sales Managers are experienced with many application scenarios, including commercial, institutional, municipal and light industrial markets worldwide. Areas of specialization include car parks, refrigeration plants, commercial swimming pools, water purification, including wastewater treatment facilities, ice arenas, wineries and breweries, schools and many more.

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

 

References

smartGAS Mikrosensorik GmbH. Web. Retrieved from

http://www.smartgas.eu/en/products/applications/foodstorage.html [accessed 30 September 2015]

CHEMAXX INC. “Ethylene Explosion – Banana Ripening.” (2006). Retrieved from

http://www.chemaxx.com/explosion17b.htm [accessed 30 September 2015]

Catalytic Generators LLC “All About Ripening.” (2015). Retrieved from

http://ripening-fruit.com/ingredients_for_proper_ripening [accessed 30 September 2015]

 

 

 

Posted in Applications, EducationalComments Off on Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Multiple Gas Detectors – Should They all be Calibrated at the Same Time?

Multiple Gas Detectors – Should They all be Calibrated at the Same Time?

Depending on the number and placement of gas detectors in your facility, you might be looking at the task of calibrating them as never-ending. It is true, calibration can be time consuming, especially if it is a large area populated with multiple fixed location sensors with different gas types – some near the ceiling, others near the floor and still others somewhere in between. However, it is a task the needs to be done and dedicating the time to calibrating them all at once is the optimal and responsible course of action. Having some sensors calibrated and others not on a job site leaves room for inaccuracies and poses a potential danger to workers and the public.

How long it takes to calibrate all the sensors will depend on the experience and training level of the person doing the calibration, what type of equipment is used and the number of sensors in the facility. Trained technicians can calibrate up to two different types of gas sensors at one time, which saves labour time. Taking on that challenge is not recommended unless the technician has the equipment, training and experience. Calibrating one sensor at a time may take a little longer, but can be easier for the inexperienced service technician and the end result is still a correctly functioning gas detection system.

Monthly bump testing of sensors is recommended in particular for sensors that are monitoring for gases that pose a serious health and safety risk when they leak, such as Ammonia, Chlorine, and Ozone. A log book must be kept to detail date, time and confirm bump testing results. It benefits the user to bump test all gas sensors in their facility. When bump testing Ammonia, in particular, use only a concentration of span gas just higher than the low alarm set point. Ammonia sensors are consumable and their life span is often measured in “ppm hours”. Using a high concentration of NH3 span gas to bump test will shorten the life of an Ammonia sensor.

How do you know if you are getting a correct reading from the unit?

The only way to guarantee that an instrument will detect gas accurately and reliably is to test it with a known concentration of gas. Exposing the instrument to a known concentration of test gas will show whether the sensors respond accurately and whether the instrument alarms function correctly. Keeping a log and verifying the accuracy of readings on a daily basis for a trial period will reinforce your confidence that the unit is performing correctly.

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

Posted in EducationalComments Off on Multiple Gas Detectors – Should They all be Calibrated at the Same Time?

Where are the Gas Detectors in Public Swimming Pool Facilities?

Where are the Gas Detectors in Public Swimming Pool Facilities?

Indoor swimming pools provide exercise and recreational fun for all ages. To ensure swimmers are submerged in crystal clear, sanitary water, a disinfectant maintenance program using Chlorine, or Chlorine & Ozone are commonly followed to treat the pool water. Chlorine is a powerful, corrosive disinfectant and in both gas and liquid forms it is toxic and hazardous to living beings at concentrations as low as 1 ppm. Ozone is created by exposing oxygen to a high voltage or ultraviolet radiation. It is more powerful than Chlorine and when used in conjunction with Chlorine it helps provide an odourless, clear water environment. Less Chlorine is required when Ozone is used as part of a swimming pool sanitization program.

The areas for potential gas leaks of Chlorine and Ozone are found around the equipment in the Chlorine Feed Room and the Ozone Generator Room. In a typical swimming pool application where only Chlorine is being used to disinfect the pool water, we suggest a controller or transmitter with  a display, audible alarm and relay outputs, be mounted outside the Chlorine Feed Room beside the inspection window so it can provide a visual confirmation of the gas level readings prior to entry. If there is a Chlorine leak, the controller or transmitter will alarm and trigger the relays to shut down the ventilation system until it is safe to exhaust the gas from the contaminated area, or activate the ventilation system depending on the local regulation codes. Inside the Chlorine feed room should be mounted a remote transmitter with a Chlorine sensor that provides continues monitoring for leaks and communicates with the controller outside the room. Chlorine is heavier than air and tends to collect in low-lying areas, so the gas detector inside the room should be mounted 6 inches above the floor, close to the area of a potential leak, but away from the ventilation fans and any pockets of air currents.

Similarly, in a typical swimming pool application that uses Chlorine & Ozone to disinfect the pool water, in addition to the aforementioned gas detection system for Chlorine, we suggest a similar set-up for the Ozone Generator Room. A controller with a display, audible alarm and relay outputs should be mounted outside the room to provide confirmation of the gas levels inside the room prior to entry. A remote transmitter with an Ozone sensor should be mounted inside the generator room, near the equipment and between the generator and the destructor. Pure Ozone is slightly heavier than air but does not necessarily settle to the floor. If additional reaction tanks or destructors are more than 16 ft (5 m) away from the existing sensor, an additional sensor may be required. If there is an Ozone leak, the controller will alarm and trigger relays to activate the emergency air exhaust system.

For both applications a remote visual alarm device such as a strobe should be mounted on the ceiling or wall inside the pool area to provide an additional visual alert in the event of a leak inside either room.

 

View Diagram

 

There are outside influences that affect the operation of gas detectors and the equipment with which they interface. In addition, sensors change characteristics as they age; they have a set lifespan and deteriorate over time. Regular maintenance of the gas detection system by a qualified technician is as important as a proper installation. For a newly installed system or as part of a very thorough maintenance schedule it is recommended that a bump test be done every 30 days. A bump test basically follows the same procedure as a calibration, but it normally uses less gas and requires less understanding of the intricate workings of the gas detector. A bump test tells you if the detector is malfunctioning or operating normally, if the sensors are responding to the gas as they should and if the low, mid and high alarms are being triggered. This level of upkeep allows you to determine that the daily readings are accurate and the devices are working correctly. If the system malfunctions or goes into fault, patrons and workers would be unprotected if a leak was to occur during that time.

If a bump test fails, a full calibration is required. Calibration is more time consuming than a bump test and should be done by a qualified technician. It is recommend that a full calibration be done every 6 months, regardless of the performance or type of gas detection device. Calibration is like resetting the parameters of the device, in terms of telling what it should be doing at what level. It could be compared to a reset button. As the sensors age, their sensitivity to the gas decreases. Calibration allows you to compensate for that deterioration and keep the sensor detecting the gas at the appropriate levels so that the low, mid and high alarms go off as they should.

It is important to keep a maintenance log with dates and services performed. After a full calibration, a service sticker should be place on the device indicating when the next calibration should be done.

When bump testing or calibrating a Chlorine or Ozone sensor, there are a few things to keep in mind. Both Chlorine and Ozone are considered to be one of the “sticky gases”, meaning they adhere to surfaces and as a result, decrease in concentration. During the flowing of the gas over the sensor, the gas will adhere to the inside of standard tubing and the lengthier the tubing the less gas is left to hit the sensor. Using Teflon lined tubing is recommended, as is a length of tubing no longer than 2 to 3 feet so the gas flow concentration doesn’t lessen over the distance from the gas cylinder to the sensor.

Last but not least, when calibrating a Chlorine sensor, to ensure you get true readings, it is recommended that you use a Chlorine gas generator rather than a cylinder of Chlorine gas. The stability and quality of the chlorine gas is much higher from a generator, making calibration easier and accurate.

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit www.critical-environment.com

 

Written by Rebecca Erickson

References
Ozone Safe Work Practices, 2006 ed. WorkSafe BC 
http://www.worksafebc.com/publications/health_and_safety/by_topic/assets/pdf/ozone_bk47.pdf
Chlorine Safe Work Practices, 2002 ed. WorkSafe BC
http://www.worksafebc.com/publications/health_and_safety/by_topic/assets/pdf/chlorine.pdf

Posted in Educational, HealthComments Off on Where are the Gas Detectors in Public Swimming Pool Facilities?

What is the difference between Residential and Commercial Gas Detectors and why should Residential Detectors NOT be used in Commercial or Industrial Applications?

What is the difference between Residential and Commercial Gas Detectors and why should Residential Detectors NOT be used in Commercial or Industrial Applications?

Commercial gas detectors can be as much as 100 times the cost of residential gas detectors, making the residential models financially tempting, especially for large area applications. However, there are some important differences in performance, diagnostics, regulatory standards, and configurability between the two that make using residential models in commercial or industrial environments insufficient, dangerous and unlawful.

 

Enclosures

Residential detectors are built to withstand standard household temperatures and activities, which means they are typically made of regular low impact plastic, are not waterproof or IP rated and are mounted on the wall and forgotten about. If used in a commercial setting, the enclosure alone probably wouldn’t survive a year.

Commercial detectors need to be able to endure all types of conditions such as heat, cold, water, dust, regular maintenance and possible damage from vehicles, machinery or vandalism. Commercial gas detector enclosures are typically rugged, waterproof, IP rated, locking and will last for years in mild to harsh environments.

 

Sensors

Residential gas detector sensors are tested before they leave the manufacturing plant and do not require calibration after they are installed. Commercial gas detectors are calibrated before they leave the manufacturing plant and require a regular maintenance schedule that includes bump tests and full calibrations to ensure the device is working properly and accurately sensing gas levels.

Residential sensor technology is basic as no specialized features are required. Likewise, the protocols are basic and often follow an OFF/ON pattern whereby the sensor takes readings at intervals.

Commercial sensor technology is required to be more advanced because of the demands of the environments the sensors are placed in and the information needed to be obtained from them. Commercial sensors are continuously monitoring the air and they may be placed in humid, cold or fluctuating temperatures or spray down environments. There are many sensing technology types (electrochemical, semiconductor, infrared, catalytic, etc.) that have different sensing ranges, lifespans, resolutions, compensations, and are better suited sensing certain gas types in different applications.

 

Functionality / Configurability

Residential gas detectors are basically maintenance free and once installed don’t require any changes to their pre-programmed settings. The alarm is set on a timed basis and in the event there is a gas leak, it will alarm only after a time-weighted duration of over 60 minutes. Meaning in general, if the gas reading is above the average exposure allowed over an eight hour period for longer than an hour, then the alarm will sound. (Of course, if the gas reading skyrockets over a certain level, the alarm will sound sooner.)

Commercial gas detectors will alarm immediately at one or more pre-determined gas levels, usually referred to as a low alarm and high alarm. Some detectors have a mid-alarm level set point as well. These detectors can also be configured to do many other things such as start or stop ventilation systems, trigger remote strobes/horns, network with each other, communicate with a BAS or a controller, dial emergency response, data log, etc.

 

Ratings / Certifications and Regulatory Authorities

Residential and commercial gas detection devices are regulated by national organizations such as UL, ANSI, CSA, EMC, local and federal building code, etc. for safety and performance and each must meet different certification standards. Additionally, the standards for commercial devices are further standardized depending on use, such as non-hazardous and hazardous applications. Failure to use the correctly rated equipment in the correct application could seriously jeopardize the health and safety of people and lead to very expensive legal issues.

Then there are the regulatory authorities such as OSHA and NIOSH who have established codes and standards for permissible exposure limits to hazardous gases in the workplace, which differ from the standards set out for residential houses.
In conclusion, residential and commercial gas detection equipment is significantly different in their functionality, physical abilities, required certifications and compliance with local and national codes and standards. One should not be substituted for the other in applications they are not approved or intended for. It is important to understand what features and benefits the different types of gas detectors offer, where and why they should be used, and the rules and regulations that govern that use to ensure that the health and safety of human lives is protected properly and with due diligence.

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com

 

Written by Rebecca Erickson

References
Sensor Insights. The Difference Between Industrial, Commercial and Residential Sensors
Mike Justice, Grid Connect. June 12 2015
http://www.sensorsmag.com/sensors-products/difference-between-industrial-commercial-and-residential-18338

Posted in Educational, Environment, NewsComments Off on What is the difference between Residential and Commercial Gas Detectors and why should Residential Detectors NOT be used in Commercial or Industrial Applications?

What is the Difference Between Explosion Proof and Intrinsically Safe Gas Detectors?

What is the Difference Between Explosion Proof and Intrinsically Safe Gas Detectors?

It only takes a spark to start a fire or cause an explosion, especially when flammable gases or vapours are present under the right conditions. There are industries that operate in these types of hazardous environments where the potential for explosions is extremely high, such as chemical plants, oil refineries, paint shops, cleaning facilities, tanks and loading facilities for flammable gases, liquids and solids. OSHA defines hazardous locations as:

Areas where flammable liquids, gases or vapors or combustible dusts exist in sufficient quantities to produce an explosion or fire. In hazardous locations, specially designed equipment and special installation techniques must be used to protect against the explosive and flammable potential of these substances.

Two types of specially designed equipment for use in hazardous locations are explosion proof and intrinsically safe.

Explosion proof is a protection technology that guarantees the housing or enclosure has been designed and constructed in such a way that it is capable of containing, controlling and venting any possible flash or explosion. Enclosures of this kind are typically made of stainless steel or cast aluminum and are of an appropriate mass and strength that they will safely contain an explosion if flammable gases or vapours should penetrate the housing and the internal electrical components or wiring should cause an ignition. The amount of power to or from the device is not of concern.

Intrinsically safe is an explosion protection technique that ensures that the electrical circuit and its wiring is engineered in such a way that it is not capable of releasing enough energy, or producing a high enough temperature under any condition and thus is not able to cause an ignition of itself or the surrounding area. This specifically designed equipment does not require a special enclosure or housing. Instead, the amount of power the device has is typically controlled through the use of intrinsic safety barriers and as a result, this type of equipment can be used only for very low power applications.

Gas detectors for hazardous location applications must meet strict codes and standards and can be built as either explosion proof or intrinsically safe. Intrinsically safe gas detectors are very common in Europe and explosion proof is the more commonly used method in North America for fixed gas detection systems. With the rugged housing to withstand harsh environments and no limits on the types of sensors, the explosion proof gas detector can be used in a wider range of applications and in particular, for applications that require high power.

 

Explosion Proof Gas Detector Intrinsically Safe Gas Detector
Protection Method Contains and controls the explosion, does not prevent an internal explosion Prevents an explosion, does not contain an explosion
Enclosure Stainless steel or cast aluminium Standard
Size, Weight Large, heavy, often bulky Compact, light
Power Requirements Power is not controlled, operates at normal power levels Power is controlled, operates on low power levels
Installation Difficult: heavy, bulky, requires heavy conduit and seals Easy: small and does not require expensive accessories
Maintenance & Calibration Non-intrusive calibration may be done without disconnecting power. Power must be disconnected if opening the device. Non-intrusive calibration may be done without disconnecting power. Power must be disconnected if opening the device.
Types of Sensors Electrochemical, infrared, combustible/catalytic or PIDs Electrochemical (low current sensors only)
Application Examples Oil Refineries, Drilling rigs on oil fields, Municipal Treatment Plants, Chemical Storage Rooms, Loading facilities for flammable gases, liquids and solids

 

Definition of Hazardous Locations in North America

ATEX Certification for products used in hazardous locations in Europe

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com

 

Written by Rebecca Erickson

References
Allen-Bradley, Rockwell Automation (October 2001) Class/Division Hazardous Location. Retrieved from http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/800-wp003_-en-p.pdf
Bob Svacina and Brad Larson, Turck Inc. (April 2000). Understanding Hazardous Area Sensing. Retrieved from http://www.parrinst.com/wp-content/uploads/downloads/2011/06/Svacina-Larson_Understanding-Hazardous-Area-Sensing_Intrinsic-Safety.pdf
CorDEX Instruments Ltd. (2010). Intrinsically Safe or Explosionproof? Understanding the technology. Retrieved from http://www.transcat.com/media/pdf/cordex-is-explosion-proof.pdf
RKI Instruments, Inc. (February 19, 2008). What’s the Difference Between “Explosion Proof” & “Intrinsically Safe”. Retrieved from http://www.rkiinstruments.com/pdf/FAQ_Explosion_Proof.pdf

Posted in EducationalComments Off on What is the Difference Between Explosion Proof and Intrinsically Safe Gas Detectors?

Archives

  • I posted a new photo to Facebook ,
  • CETCI Launches the FCS Flexible Control System, a High Performance Gas Detection Controller with Logic Control... ,
  • We are going to the AHR Expo in Vegas. Are you? If so, drop by our booth to say Hi! Check us out on Map Your Show... ,
  • I posted a new photo to Facebook ,
  • Tutorial – How to Calibrate the DST-ECO: via @YouTube,
  • Last day of the AHR Expo in Mexico. Word is, it's been a great show!,
  • We make gas detectors for monitoring toxic, combustible and refrigerant gases for a wide range of applications.... ,
  • BTL Listing granted for CETCI BACnet® Module... ,

Gas Detectors

CETCI gas detectors are used to detect many different gases. Some of the most common are Carbon Monoxide, Carbon Dioxide, Nitrogen Dioxide, Nitric Oxide, Ammonia, Chlorine, Ozone, Combustible Gases like Methane and Propane, Oxygen, Refrigerants and more.

IAQ Monitors

The YES Series of IAQ Monitors are essential for those responsible for conducting Indoor Air Quality (IAQ) Investigations. These instruments are specifically designed to measure and record the quality of indoor air in offices, buildings, homes, schools, parking garages, ice rinks, etc.