Archive | Applications

Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

With the recent legalization of marijuana in many North American regions, the cannabis cultivation industry is booming. Greenhouses and other indoor grow rooms provide a structure for growing plants in a controlled environment but can also pose potential hazards to human health. To create favourable growing conditions, reliable heating, cooling and ventilation must be used. Heating may be supplied by sunlight, natural gas, propane gas, fuel oil, wood or electricity. Gas powered equipment may be a source of carbon monoxide if not properly maintained and serviced. Grow lights emit a great deal of heat and can cause combustible gases to ignite. Cooling of the facility is often done by a ventilation system. But there may also be an air conditioning system, which could be a source for refrigerant leaks. Current practices for the commercial cultivation of marijuana and industrial hemp uses Carbon dioxide (CO2) enrichment to increase plant growth and development either using cylinders of liquefied compressed gas or a CO2 generator. CO2 displaces oxygen and can cause an asphyxiation hazard.

 

Two gas detectors should be mounted inside the furnace room – one for monitoring potential leaks in the pipes supplying the gas to the furnace, and the other monitoring carbon monoxide levels generated by the furnace. A well maintained, efficiently burning furnace produces very small amounts of CO, but a dirty, inefficient burning one can product deadly amounts. To monitor the CO levels, an LPT-M-TCO-R should be mounted inside the furnace room at the “breathing zone” (4 -6 ft from the floor). Connected the the LPT-M-TCO-R would be a remote sensor. If the furnace uses propane, an ESH-A-C3H8-100 remote sensor with an internal propane sensor would be used, mounted 6 inches off the finished floor, close to the pipes suppling the gas to the furnace. If the furnace uses natural gas, an ESH-A-CCH4-100 remote sensor with an internal methane sensor should be used instead, mounted 6 inches from the ceiling above the pipes supplying the gas.

 

Inside the room, should be an audible/visual alarm device such as the RSH-24V-R Remote Strobe/Horn. Mounted outside the door of the furnace room would be a QCC Quad Channel Controller. If there are additional entrances to the room, each should have a remote visual/audible alarm device outside the door. Inside the grow room there should be an AST-IS6 carbon dioxide gas detector mounted in the “breathing zone” (4 – 6 ft from the floor) to provide continuous monitoring of CO2 levels. This is especially important if a CO2 enrichment practice is used. The AST-IS6 can be factory set with a range of 0 – 5,000 ppm and one device covers approximately 743 sq m (8,000 sq ft).

 

The LPT-M and AST-IS6 will communicate with QCC, which in turn will display their gas level readings, and in the event of a leak / high gas concentration, will provide an audible alarm and control equipment such as the ventilation system, shut off the furnace, trigger the other remote horn/strobe devices or other set responses as configured using its 3 internal relays. The QCC can be ordered with an optional data logging package and it can be configured to communicate with a Building Automation System. The aforementioned gas detectors/sensors are housed in water / dust tight enclosures, and are IP54 rated with the factory installed splash guard, providing protection for the equipment in wet areas.

 

Typical Indoor Grow Op Monitoring System:

3D-grow-room-QCC

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies Canada Inc. is a leading equipment manufacturer for commercial and industrial gas detection applications. We are dedicated to designing, developing and servicing hazardous gas detection systems for a wide range of applications that require monitoring of refrigerants, TVOCs, combustible and toxic gases. CETCI’s products are sold through a worldwide network of authorized distributors. Our knowledgeable Regional Sales Managers are experienced with many application scenarios, including commercial, institutional, municipal and light industrial markets worldwide. Areas of specialization include car parks, refrigeration plants, commercial swimming pools, water purification, including wastewater treatment facilities, ice arenas, wineries and breweries, schools and many more.

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

Posted in Applications, EducationalComments Off on Monitoring of CO, CO2 and Combustible Gases in Indoor Grow Ops

Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Fruits and vegetables are commonly shipped for long distances from one country to another before they are ripe so they can endure the voyage and remain viable. Upon arrival at their destination, the first order of business is to get them ripe and ready for sale and consumption.

As fruit and vegetables ripen, they release ethylene, a naturally occurring growth hormone. To be profitable and meet demands, commercial fresh produce companies need to speed up the ripening process in a uniform and predictable way, which is achieved by adding more ethylene in a controlled environment. Typically the fresh produce is placed in air-tight ripening rooms and ethylene is introduced at concentrations between 10 and 1,000 ppm depending on the type of produce.

Ethylene is not harmful to humans in the concentrations used in ripening rooms. An extremely high level of ethylene would have to be inhaled in order to have an adverse effect on human health. That being said, ethylene is a very reactive and flammable gas, making the potential for an explosion a safety concern. The LEL for ethylene is 27,000 ppm (2.7%) and a common concentration used in a ripening room is 1,000 ppm (0.1% by volume), with a typical exposure time of 24 hours.

Two common ways to add ethylene to the ripening rooms is by high pressure gas cylinders or ethylene generators. If ethylene is delivered into the rooms by pipes from cylinders, there are areas for potential leaks and the threat of explosion from cylinders of pure ethylene is high. An ethylene gas detector would be highly recommended to continuously monitor the ethylene gas levels in the cylinder storage room.

In the ripening rooms, the primary reason for an ethylene gas detector is not for the safety of humans, but rather for the safety of the perishable goods. Assisted ripening is a complex process and predictions can be made about the remaining shelf life of the perishable goods based on the level of ethylene gas that is present; that the produce gives off. Some types of fruits and vegetables are more sensitive to ethylene than others. Ethylene sensitive produce will spoil if exposed to levels that make them ripen too quickly. Varieties that are more tolerant but don’t get the right amount will not ripen on schedule.

There is also the potential for ethylene to leak from one room into another, especially if the method of delivery is through a network of pipes. This could cause premature ripening or result in damage to the other types of produce in adjacent rooms. Monitoring the concentration levels of the ethylene gas in each room will help ensure the correct amount is being delivered at all times.

As fruit ripens, it releases carbon dioxide. This decreases the oxygen level in the room and delays the effects of the ethylene. CO2 levels in excess of 1% (10,000 ppm) will slow the ripening process, and can cause quality and production problems. When CO2 levels build up, the ripening room should be vented, which could be as simple as opening the door, or turning on a ventilation system. Constant monitoring of the CO2 levels inside the room with a gas detector that can be configured to activate the ventilation system at a predefined concentration would allow for more efficient control and optimization of the ripening process, a higher safety level and better production.

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies Canada Inc. is a leading equipment manufacturer for commercial and industrial gas detection applications. We are dedicated to designing, developing and servicing hazardous gas detection systems for a wide range of applications that require monitoring of refrigerants, TVOCs, combustible and toxic gases. CETCI’s products are sold through a worldwide network of authorized distributors. Our knowledgeable Regional Sales Managers are experienced with many application scenarios, including commercial, institutional, municipal and light industrial markets worldwide. Areas of specialization include car parks, refrigeration plants, commercial swimming pools, water purification, including wastewater treatment facilities, ice arenas, wineries and breweries, schools and many more.

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit

www.critical-environment.com.

 

References

smartGAS Mikrosensorik GmbH. Web. Retrieved from

http://www.smartgas.eu/en/products/applications/foodstorage.html [accessed 30 September 2015]

CHEMAXX INC. “Ethylene Explosion – Banana Ripening.” (2006). Retrieved from

http://www.chemaxx.com/explosion17b.htm [accessed 30 September 2015]

Catalytic Generators LLC “All About Ripening.” (2015). Retrieved from

http://ripening-fruit.com/ingredients_for_proper_ripening [accessed 30 September 2015]

 

 

 

Posted in Applications, EducationalComments Off on Monitoring Ethylene (C2H4) and Carbon Dioxide (CO2) in Ripening Rooms

Monitoring Ozone (in the air) in Hatchery & Fish Farm Applications

Monitoring Ozone (in the air) in Hatchery & Fish Farm Applications

Critical Environment Technologies Canada Inc, (CETCI) offers strategic and reliable gas detection solutions for many applications, including ozone gas detection in the aquaculture industry.

Hatcheries, fish farms and such in the aquaculture industry require clean water to maintain a high survival rate while rearing aquatic animals. Contaminated water increases the risk of infection which in turn can compromise production. A common way to disinfect water is by generating ozone on-site with an ozone generator. Ozone is a powerful bactericide and viricide that decreases the risk of infection from water borne diseases which helps maintain a high survival rate, aerates the water and leaves no undesirable residues. However, ozone is highly toxic to humans and aquatic animals at very low levels. Standards set by OSHA allow a permissible exposure level of less than 0.1 mg/L on a time-weighted average for an 8 hour work period and a maximum single exposure level of 0.3 mg/L for less than a 10 minute duration.

For human safety, the ozone concentrations in the air should be monitored in the locations that could become contaminated with ozone. A typical ozone system for a hatchery operation has an ozone generator and three chambers. The ozone generator creates ozone which is then introduced into the first tank, the counter flow diffusion chamber. Here the oxidization of dissolved matter occurs. The first ozone gas detector should be installed in the ozone generator room to monitor for potential leaks around the ozone generator and piping structures. If the gas detector were to go into alarm, it can be configured to shut off the ozone generator, stopping the production of ozone. In addition, the ventilation and make-up air fans can be triggered to come on and go off at set intervals, including when the gas detector goes into alarm. The second chamber is the reaction or contact tank where the disinfection of the water and slow chemical reactions occur. Depending on the operation setup, the second chamber may be in the ozone generator room or in another room or general area. From the contact tank, the water gets sent to the third chamber which completes the slow reactions and the majority of the residual ozone decomposes. Any undissolved or residual ozone gas is collected and vented by way of the ozone destruction process which will destroy the ozone in the gas before releasing it into the atmosphere. A second ozone gas detector should be installed near the ozone destructor to monitor the exhaust air stream to ensure the ozone destructor is operating effectively.

CETCI’s LPT-A-O3 Ozone Gas Detector offers a fixed, continuous gas monitoring solution for hatcheries, fish farms and other aquaculture operations that use ozone to clean the water. Use as a standalone system, or combine up to four ozone gas detectors with our QCC Quad Channel Controller for larger applications. Each LPT-A-O3 transmitter features an audible alarm, LCD display with real time gas readings and a programmable relay to shut down the ozone generator. When combined with a QCC Controller, three more relays are available for triggering safety events such as switching on/off ventilation fans or make-up air fans and/or activating a remote strobe/horn. More value-added features available are two analog outputs, a data logger, manual equipment ON/OFF switch, top mounted strobe, remote strobe and horn combo and remote display module that offers the ability to view the gas level readings in a separate location from the controller and transmitters.

Ozone is a very reactive gas and can quickly corrode metals and damage plastic materials. There should be regular maintenance checks of pipe fittings, gaskets and seals all along the ozone injection system. In addition to a fixed gas detection system, it is also recommended that portable handheld monitors be used to do spot checks for leaks around piping and in poorly ventilated areas. If there is an equipment malfunction, or if tubing’s and fittings leak, or too much ozone is being produced, a properly installed ozone gas detector system will alarm and shut down the ozone generator before a dangerous environment is created and the health and safety of the workers is jeopardized.

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies designs and manufacturers indoor air quality and fixed gas detection systems including self-contained systems, controllers and transmitters (analog, digital and wireless). Applications include commercial HVAC, institutional, municipal and light industrial markets worldwide. Many of these applications are for vehicle exhaust, but areas of specialization include refrigeration, food processing plants, manufacturing plants, wastewater treatment plants, commercial swimming pools and many more.

For more information about our products, check out our website at www.critical-environment.com or to discuss a tailored gas detection solution for your application, contact us at 1-877-940-8741.

 

References

Eugster, Ulrich and Bruce Stanley “The Use of Ozone as a Disinfectant in Fish Hatcheries and Fish Farms.” Web.
   http://www.ozomax.com/pdf/article-seafood-hatchery.pdf [accessed 2 October 2015]
Gearheart, Michael and Steven Summerfelt “Ozone Safety in Aquaculture Systems.” Hatchery International (July/August 2007). Web.
  http://www.ozonesolutions.com/files/research/aquaculture_safety.pdf [accessed 2 October 2015]
Summerfelt, Steven T and John N. Hochheimer “Review of Ozone Processes and Applications As an Oxidizing Agent in Aquaculture.” The
  Progressive Fish-Culturist (1997) 59:94-105. Web. http://www.w-m-t.com/library/pdf/Summerfelt_paper_Review_of_Ozone.pdf [accessed 2
  October 2015]
WorkSafe BC “Ozone Safe Work Practices.” (2006) Web.
  http://www.worksafebc.com/publications/health_and_safety/by_topic/assets/pdf/ozone_bk47.pdf [accessed 2 October 2015]

 

Posted in Applications, Products, TransmittersComments Off on Monitoring Ozone (in the air) in Hatchery & Fish Farm Applications

Four Channel Gas Detector for Wastewater Treatment Plants

Four Channel Gas Detector for Wastewater Treatment Plants

Critical Environment Technologies Canada Inc, (CETCI) offers strategic and reliable gas detection solutions for many applications, including wastewater treatment plants. Our QCC Quad Channel Controller, is an ideal fixed gas detection system for this type of application.

A wastewater treatment facility is a wet maze of rooms, pipes, pumps, wells, chambers, concrete tanks and settling basins. Each treatment stage the wastewater goes through involves hazardous gases that may be already present, are produced or are added to complete the process. To ensure the safety of the workers, equipment and the facility, every area presenting a gas hazard should be monitored, including the gas storage rooms, ozone generator room and any room that gas passes through. In the larger, open areas, a fixed gas detection system is suitable; in confined spaces that operators enter and where gas may be present, portable gas detectors are more appropriate.

The most common hazardous gases found in this type of facility are hydrogen sulphide, methane, ammonia, carbon monoxide, chlorine and oxygen deficiency. Some facilities may also use ozone, chlorine dioxide or sodium hypochlorite with the chlorine during the sanitization treatment process. Furthermore, sulphur dioxide is often used to de-chlorinate the water once the treatment process is complete.

CETCI’s QCC Quad Channel Controller offers a fixed, continuous gas monitoring solution with four gas channels, three programmable relays, a door mounted audible alarm and an optional BACnet RS-485 output signal for communicating with a building automation system. The four gas channels can be configured with any combination of analog or digital transmitters with the same or different types of gas sensors. For large applications, multiple QCC controllers can be networked together, each providing another four available gas channels and 3 relays. Other value added, optional features include 2 analog outputs with a data logger, manual equipment ON/OFF switch, top mounted strobe, remote strobe and horn combo and a remote display module that offers the ability to view the gas level readings in a separate location from the controller and transmitters.

The potential for physical damage to the gas detection equipment is high in this type of harsh, wet environment. CETCI’s equipment is constructed to withstand the unpredictable water levels and acidic or caustic conditions from gases like hydrogen sulphide and chlorine when it mixes with water.

 

About Critical Environment Technologies Canada Inc.

Critical Environment Technologies designs and manufacturers indoor air quality and fixed gas detection systems including self-contained systems, controllers and transmitters (analog, digital and wireless). Applications include commercial HVAC, institutional, municipal and light industrial markets worldwide. Many of these applications are for vehicle exhaust, but areas of specialization include refrigeration, food processing plants, manufacturing plants, wastewater treatment plants, commercial swimming pools and many more.

For more information about our products, check out our website at www.critical-environment.com or to discuss a tailored gas detection solution for your application, contact us at 1-877-940-8741.

Posted in Applications, Controllers, News, ProductsComments Off on Four Channel Gas Detector for Wastewater Treatment Plants

Monitoring Multiple Gas Hazards in Ice Arenas

Monitoring Multiple Gas Hazards in Ice Arenas

What is a Canadian winter without ice hockey, figure skating or curling? While outdoor skating opportunities are a delight only Mother Nature can provide, community recreational facilities with ice arenas are plentiful and well attended. But there could be dangers present in this place of cheers, whistles and shots on net.

The equipment used in an arena such as an ice re-surfacer, ice edger, floor sweepers, lift trucks and other special equipment are more often powered by fuel than electricity. The exhaust produced by the gas, propane or diesel fuel powered machines emits, into the air, carbon monoxide (CO), nitrogen dioxide (NO2) and particulates. Ammonia (NH3) is commonly used in the ice chiller mechanical room and if a leak were to occur, it releases a corrosive, toxic gas. If the ventilation system is inadequately designed to handle the air exchange or it is not functioning properly, these toxic pollutants remain in the air to be recirculated and inhaled by spectators, players and employees. Arena operators can improve the air quality inside the arena and provide a safe, environment by ensuring the ventilation system is working properly and installing a gas detection system to continuously monitor for leaks and unhealthy concentrations of toxic gases.

Because several different types of gas hazards are present in various locations throughout the facility, multiple gas detectors are required to provide adequate monitoring coverage.

A Typical Ice Arena Monitoring System:

  • There should be a detector in the ice chiller room, mounted on or near the ceiling to monitor for ammonia leaks. Ammonia is lighter than air and will typically collect within 12 inches of the ceiling. Outside the chiller room door, should be a controller with a display to allow a visual check of the gas level prior to entering the room. In addition, an audible and visual alarm should be mounted inside and outside the room.
  • An appropriate location to monitor carbon monoxide and nitrogen dioxide levels is above the penalty box or score keepers box. Dual channel gas detectors are available and offer two sensors (in this case, CO and NO2) inside the same unit. This detector may have an audible alarm and be configured to communicate with a controller located outside the ice chiller room.
  • The ice resurfacer equipment parking area is a prime area for potential propane or methane leaks depending on the type of fuel powering the machine. An explosion proof gas detector is highly recommended for monitoring either of these gases because it is possible for a non-explosion proof transmitter to cause an arc and ignite explosive concentrations of the leaking gas. If propane is the gas being monitored, the explosion proof transmitter should be mounted 6 inches from the floor, preferably near the drain channel, as propane is heavier than air and will accumulate in low lying areas. If methane is being monitored, the detector should be mounted on or near the ceiling.

Strategic placement of the detectors provide continuous monitoring for potential leaks. Each gas detector should be configured to communicate with a multi-channel controller, which will provide a single point of access to view gas level readings, configure each detector’s settings and trigger alarms and ventilation fans. The multi-channel controller should be mounted outside the door to the ice chiller room, allowing for a visual check of the ammonia gas level inside the room prior to entry. The controller should have three levels of alarm and the sequence of operation begins with the low alarm which activates the ventilation fans to start evacuating the polluted air. At high alarm, the panel mounted audible as well as the remote alarm devices that are controlled by the high alarm relay will be activated.

Additional gas detectors may be necessary depending on your facility’s operational procedures or layout. Consult with your CETCI experts to find the best system to ensure your facility is well equipped to detect and deal with any hazardous gas leaks so the fans can continue cheering and the athletes performing.

A  Typical Ice Arena Monitoring System:

View Diagram

 

For suggestions on gas detection systems, indoor air quality monitors and calibration, please visit www.critical-environment.com

Posted in Applications, Educational, HealthComments Off on Monitoring Multiple Gas Hazards in Ice Arenas


Archives

  • I posted a new photo to Facebook ,
  • CETCI Launches the FCS Flexible Control System, a High Performance Gas Detection Controller with Logic Control... ,
  • We are going to the AHR Expo in Vegas. Are you? If so, drop by our booth to say Hi! Check us out on Map Your Show... ,
  • I posted a new photo to Facebook ,
  • Tutorial – How to Calibrate the DST-ECO: via @YouTube,
  • Last day of the AHR Expo in Mexico. Word is, it's been a great show!,
  • We make gas detectors for monitoring toxic, combustible and refrigerant gases for a wide range of applications.... ,
  • BTL Listing granted for CETCI BACnet® Module... ,

Gas Detectors

CETCI gas detectors are used to detect many different gases. Some of the most common are Carbon Monoxide, Carbon Dioxide, Nitrogen Dioxide, Nitric Oxide, Ammonia, Chlorine, Ozone, Combustible Gases like Methane and Propane, Oxygen, Refrigerants and more.

IAQ Monitors

The YES Series of IAQ Monitors are essential for those responsible for conducting Indoor Air Quality (IAQ) Investigations. These instruments are specifically designed to measure and record the quality of indoor air in offices, buildings, homes, schools, parking garages, ice rinks, etc.